# Topological applications of Wadge theory II

Andrea Medini

Kurt Gödel Research Center University of Vienna

January 27, 2020

# Reasonably closed Wadge classes

Given  $i \in 2$ , set:

 $Q_i = \{x \in 2^{\omega} : x(n) = i \text{ for all but finitely many } n \in \omega\}$ 

Notice that every element of  $2^{\omega} \setminus (Q_0 \cup Q_1)$  is obtained by alternating finite blocks of zeros and finite blocks of ones. Define the function  $\phi : 2^{\omega} \setminus (Q_0 \cup Q_1) \longrightarrow 2^{\omega}$  by setting

 $\phi(x)(n) = \begin{cases} 0 & \text{if the } n^{\text{th}} \text{ block of zeros of } x \text{ has even length} \\ 1 & \text{otherwise} \end{cases}$ 

where we start counting with the 0<sup>th</sup> block of zeros. It is easy to check that  $\phi$  is continuous.

#### Definition (Steel, 1980)

Let  $\Gamma$  be a Wadge class in  $2^{\omega}$ . We will say that  $\Gamma$  is *reasonably* closed if  $\phi^{-1}[A] \cup Q_0 \in \Gamma$  for every  $A \in \Gamma$ .

# Why would anybody need that?

#### Lemma (Harrington)

Let  $\Gamma = [B]$  be a reasonably closed Wadge class in  $2^{\omega}$ . If  $A \leq B$  then this is witnessed by an injective function.

The above lemma will be useful to us because every injective continuous function  $f: 2^{\omega} \longrightarrow 2^{\omega}$  is an embedding.

#### Proof.

Let  $A^* = \phi^{-1}[A] \cup Q_0$ . Since  $\Gamma$  is reasonably closed, we can fix  $\sigma : 2^{<\omega} \longrightarrow 2^{<\omega}$  such that  $f_{\sigma} : 2^{\omega} \longrightarrow 2^{\omega}$  witnesses  $A^* \leq B$ . We will construct  $\tau : 2^{<\omega} \longrightarrow 2^{<\omega}$  such that  $f_{\tau} : 2^{\omega} \longrightarrow 2^{\omega}$  witnesses  $A \leq A^*$  and  $f_{\sigma} \circ f_{\tau}$  is injective. Make sure that

- 1.  $\tau(s)$  always ends with a 1
- 2. There are exactly |s| blocks of zeros in  $\tau(s)$
- 3. s(n) is the parity of the  $n^{\text{th}}$  block of zeros in  $\tau(s)$

Begin by setting  $\tau(\emptyset) = \langle 1 \rangle$ . Given  $s \in 2^{<\omega}$ , notice that  $\tau(s)^{\frown} \vec{0} \in A^*$  and  $\tau(s)^{\frown} \vec{1} \notin A^*$ . Since  $f_{\sigma}$  witnesses that  $A^* \leq B$ , we must have  $f_{\sigma}(\tau(s)^{\frown} \vec{0}) \in B$ and  $f_{\sigma}(\tau(s)^{\frown} \vec{1}) \notin B$ . Therefore, we can find  $k \in \omega$  such that

$$\sigma(\tau(s)^{\frown} 0^k) \neq \sigma(\tau(s)^{\frown} 1^k)$$

Now simply pick  $\tau(s^{-}i) \supseteq \tau(s)^{-}i^{k}$  for i = 0, 1 satisfying conditions (1), (2) and (3).

To check that  $f_{\tau}$  has the desired properties, observe that

- ▶  $ran(f_{\tau}) \subseteq 2^{\omega} \setminus (Q_0 \cup Q_1)$  (By conditions 1 and 2)
- $\phi(f_{\tau}(x)) = x$  for every  $x \in 2^{\omega}$  (By conditions 1 and 3)

(日) (同) (三) (三) (三) (○) (○)

# Our main tool: Steel's theorem

Given a Wadge class  $\Gamma$  in  $2^{\omega}$  and  $X \subseteq 2^{\omega}$ , we will say that X is everywhere properly  $\Gamma$  if  $X \cap [s] \in \Gamma \setminus \check{\Gamma}$  for every  $s \in 2^{<\omega}$ .

#### Theorem (Steel, 1980)

Let  $\Gamma$  be a reasonably closed Wadge class in  $2^{\omega}$ . Assume that X and Y are subsets of  $2^{\omega}$  that satisfy the following:

- X and Y are everywhere properly Γ
- ► X and Y are either both meager or both comeager

Then there exists a homeomorphism  $h: 2^{\omega} \longrightarrow 2^{\omega}$  such that h[X] = Y.

#### Proof.

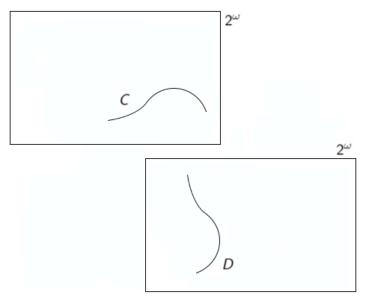
Without loss of generality, fix closed nowhere dense subsets  $X_n$  and  $Y_n$  of  $2^{\omega}$  for  $n \in \omega$  such that  $X \subset \bigcup_{n \in \omega} X_n$  and  $Y \subset \bigcup_{n \in \omega} Y_n$ . We will combine Harrington's Lemma with Knaster-Reichbach systems. (To be continued...)

Fix a homeomorphism  $h: C \longrightarrow D$  between closed nowhere dense subsets of  $2^{\omega}$ . We will say that  $\langle \mathcal{U}, \mathcal{V}, \psi \rangle$  is a *Knaster-Reichbach cover* (briefly, a KR-cover) for  $\langle 2^{\omega} \setminus C, 2^{\omega} \setminus D, h \rangle$  if the following conditions hold:

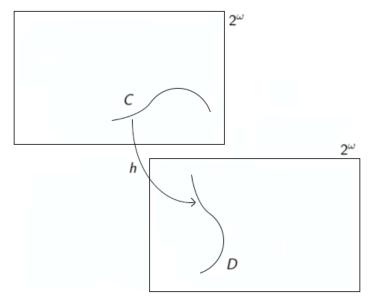
- → U is a cover of 2<sup>ω</sup> \ C consisting of pairwise disjoint non-empty clopen subsets of 2<sup>ω</sup>
- V is a cover of 2<sup>∞</sup> \ D consisting of pairwise disjoint non-empty clopen subsets of 2<sup>∞</sup>
- $\psi: \mathcal{U} \longrightarrow \mathcal{V}$  is a bijection
- If f: 2<sup>ω</sup> → 2<sup>ω</sup> is a bijection such that h ⊆ f and
  f[U] = ψ(U) for every U ∈ U (we say that f respects ψ),
  then f is continuous on C and f<sup>-1</sup> is continuous on D

#### Lemma (see Medini, 2015)

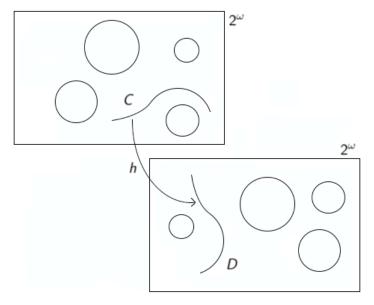
Let  $h: C \longrightarrow D$  be a homeomorphism between closed nowhere dense subsets of  $2^{\omega}$ . Then there exists a KR-cover for  $\langle 2^{\omega} \setminus C, 2^{\omega} \setminus D, h \rangle$ .

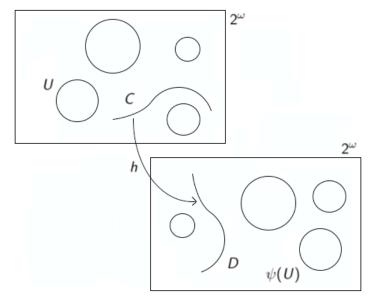


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで



▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ の Q @



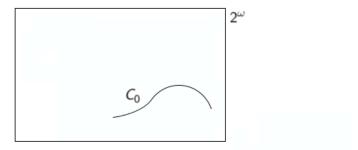


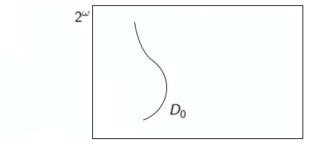
Fix an admissible metric on  $2^{\omega}$ . We will say that a sequence  $\langle \langle h_n, \mathcal{K}_n \rangle : n \in \omega \rangle$  is a *Knaster-Reichbach system* (briefly, a KR-system) if the following conditions are satisfied:

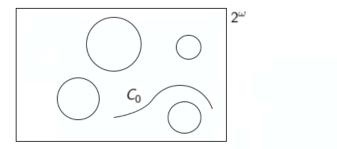
► Each h<sub>n</sub>: C<sub>n</sub> → D<sub>n</sub> is a homeomorphism between closed nowhere dense subsets of 2<sup>ω</sup>

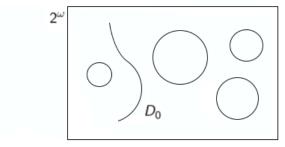
• 
$$h_m \subseteq h_n$$
 whenever  $m \le n$ 

- Each  $\mathcal{K}_n = \langle \mathcal{U}_n, \mathcal{V}_n, \psi_n \rangle$  is a KR-cover for  $\langle 2^{\omega} \setminus C_n, 2^{\omega} \setminus D_n, h_n \rangle$
- mesh $(\mathcal{U}_n) \leq 2^{-n}$  and mesh $(\mathcal{V}_n) \leq 2^{-n}$  for each n
- $\mathcal{U}_m$  refines  $\mathcal{U}_n$  and  $\mathcal{V}_m$  refines  $\mathcal{V}_n$  whenever  $m \ge n$
- Given U ∈ U<sub>m</sub> and V ∈ U<sub>n</sub> with m ≥ n, then U ⊆ V if and only if ψ<sub>m</sub>(U) ⊆ ψ<sub>n</sub>(V)

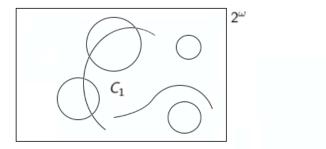


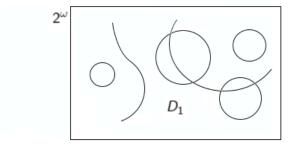


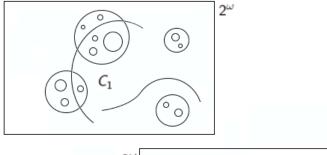


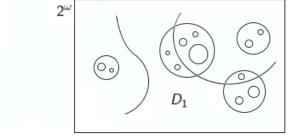


◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへ(?)









# Why do we care about Knaster-Reichbach systems?

Because they give us homeomorphisms!

#### Theorem (see Medini, 2015)

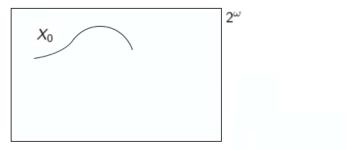
Assume that  $\langle \langle h_n, \mathcal{K}_n \rangle : n \in \omega \rangle$  is a KR-system. Then there exists a homeomorphism  $h : 2^{\omega} \longrightarrow 2^{\omega}$  such that  $h \supseteq \bigcup_{n \in \omega} h_n$ .

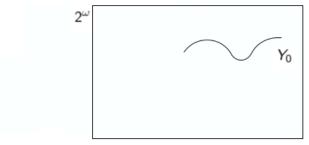
#### Corollary

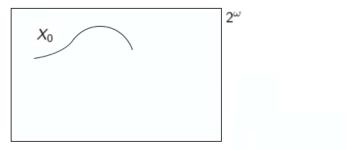
Let X and Y be subspaces of  $2^{\omega}$ . Assume that  $\langle \langle h_n, \mathcal{K}_n \rangle : n \in \omega \rangle$  is a KR-system satisfying the following additional conditions:

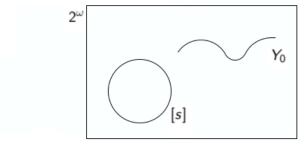
- ►  $X \subseteq \bigcup_{n \in \omega} C_n$
- $Y \subseteq \bigcup_{n \in \omega} D_n$
- $h_n[X \cap C_n] = Y \cap D_n$  for each n

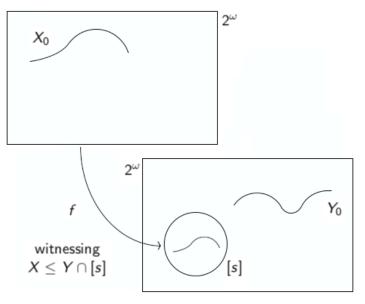
Then there exists a homeomorphism  $h : 2^{\omega} \longrightarrow 2^{\omega}$  such that  $h \supseteq \bigcup_{n \in \omega} h_n$  and h[X] = Y.



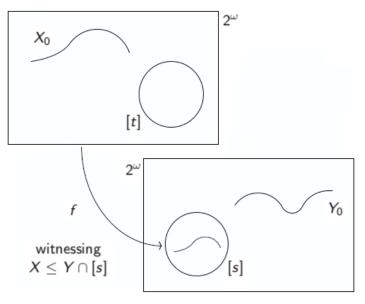




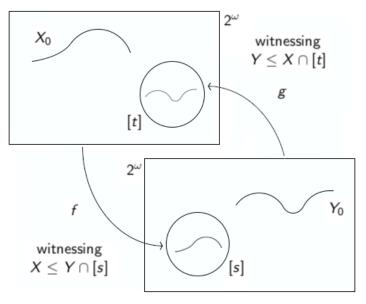




◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣�?



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Remember that our strategy is to construct a KR-system  $\langle \langle h_n, \mathcal{K}_n \rangle : n \in \omega \rangle$ . We have seen how to begin:

- $\bullet \ C_0 = X_0 \cup g[Y_0]$
- $\blacktriangleright D_0 = Y_0 \cup f[X_0]$
- $h_0 = (f \upharpoonright X_0) \cup (g^{-1} \upharpoonright g[Y_0])$

Then obtain a KR-cover  $\langle \mathcal{U}_0, \mathcal{V}_0, \psi_0 \rangle$  for  $\langle 2^{\omega} \setminus C_0, 2^{\omega} \setminus D_0, h_0 \rangle$ . The next step is like the first one, but with the following changes:

▶ Instead of working between  $2^{\omega}$  and  $2^{\omega}$ , work between U and  $\psi_0(U)$ , where  $U \in U_0$ 

- Instead of looking at  $X_0$  and  $Y_0$ , look at  $X_1 \cap U$  and  $Y_1 \cap \psi_0(U)$
- ► Repeat for every U ∈ U<sub>0</sub>, then union up the partial homeomorphisms to get h<sub>1</sub>

Keep going like this for  $\omega$  more steps...

# Thank you for your attention



# and have a good evening!