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Reasonably closed Wadge classes
Given i ∈ 2, set:

Qi = {x ∈ 2ω : x(n) = i for all but finitely many n ∈ ω}

Notice that every element of 2ω \ (Q0 ∪ Q1) is obtained by
alternating finite blocks of zeros and finite blocks of ones.

Define the function φ : 2ω \ (Q0 ∪ Q1) −→ 2ω by setting

φ(x)(n) =

{
0 if the nth block of zeros of x has even length
1 otherwise

where we start counting with the 0th block of zeros. It is easy to
check that φ is continuous.

Definition (Steel, 1980)

Let Γ be a Wadge class in 2ω. We will say that Γ is reasonably
closed if φ−1[A] ∪ Q0 ∈ Γ for every A ∈ Γ.



Why would anybody need that?

Lemma (Harrington)

Let Γ = [B] be a reasonably closed Wadge class in 2ω. If A ≤ B
then this is witnessed by an injective function.

The above lemma will be useful to us because every injective
continuous function f : 2ω −→ 2ω is an embedding.

Proof.
Let A∗ = φ−1[A] ∪ Q0. Since Γ is reasonably closed, we can fix
σ : 2<ω −→ 2<ω such that fσ : 2ω −→ 2ω witnesses A∗ ≤ B. We
will construct τ : 2<ω −→ 2<ω such that fτ : 2ω −→ 2ω witnesses
A ≤ A∗ and fσ ◦ fτ is injective.
Make sure that

1. τ(s) always ends with a 1

2. There are exactly |s| blocks of zeros in τ(s)

3. s(n) is the parity of the nth block of zeros in τ(s)



Begin by setting τ(∅) = 〈1〉.
Given s ∈ 2<ω, notice that τ(s)_~0 ∈ A∗ and τ(s)_~1 /∈ A∗.
Since fσ witnesses that A∗ ≤ B, we must have fσ(τ(s)_~0) ∈ B
and fσ(τ(s)_~1) /∈ B. Therefore, we can find k ∈ ω such that

σ(τ(s)_0k) 6= σ(τ(s)_1k)

Now simply pick τ(s_i) ⊇ τ(s)_ik for i = 0, 1 satisfying
conditions (1), (2) and (3).
To check that fτ has the desired properties, observe that

I ran(fτ ) ⊆ 2ω \ (Q0 ∪ Q1) (By conditions 1 and 2)

I φ(fτ (x)) = x for every x ∈ 2ω (By conditions 1 and 3)



Our main tool: Steel’s theorem
Given a Wadge class Γ in 2ω and X ⊆ 2ω, we will say that X is
everywhere properly Γ if X ∩ [s] ∈ Γ \ Γ̌ for every s ∈ 2<ω.

Theorem (Steel, 1980)

Let Γ be a reasonably closed Wadge class in 2ω. Assume that X
and Y are subsets of 2ω that satisfy the following:

I X and Y are everywhere properly Γ

I X and Y are either both meager or both comeager

Then there exists a homeomorphism h : 2ω −→ 2ω such that
h[X ] = Y .

Proof.
Without loss of generality, fix closed nowhere dense subsets Xn and
Yn of 2ω for n ∈ ω such that X ⊂

⋃
n∈ω Xn and Y ⊂

⋃
n∈ω Yn.

We will combine Harrington’s Lemma with Knaster-Reichbach
systems. (To be continued...)



Knaster-Reichbach covers
Fix a homeomorphism h : C −→ D between closed nowhere dense
subsets of 2ω. We will say that 〈U ,V, ψ〉 is a Knaster-Reichbach
cover (briefly, a KR-cover) for 〈2ω \ C , 2ω \ D, h〉 if the following
conditions hold:

I U is a cover of 2ω \ C consisting of pairwise disjoint
non-empty clopen subsets of 2ω

I V is a cover of 2ω \ D consisting of pairwise disjoint
non-empty clopen subsets of 2ω

I ψ : U −→ V is a bijection

I If f : 2ω −→ 2ω is a bijection such that h ⊆ f and
f [U] = ψ(U) for every U ∈ U (we say that f respects ψ),
then f is continuous on C and f −1 is continuous on D

Lemma (see Medini, 2015)

Let h : C −→ D be a homeomorphism between closed nowhere
dense subsets of 2ω. Then there exists a KR-cover for
〈2ω \ C , 2ω \ D, h〉.
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Knaster-Reichbach systems
Fix an admissible metric on 2ω. We will say that a sequence
〈〈hn,Kn〉 : n ∈ ω〉 is a Knaster-Reichbach system (briefly, a
KR-system) if the following conditions are satisfied:

I Each hn : Cn −→ Dn is a homeomorphism between closed
nowhere dense subsets of 2ω

I hm ⊆ hn whenever m ≤ n

I Each Kn = 〈Un,Vn, ψn〉 is a KR-cover for 〈2ω \Cn, 2
ω \Dn, hn〉

I mesh(Un) ≤ 2−n and mesh(Vn) ≤ 2−n for each n

I Um refines Un and Vm refines Vn whenever m ≥ n

I Given U ∈ Um and V ∈ Un with m ≥ n, then U ⊆ V if and
only if ψm(U) ⊆ ψn(V )
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Why do we care about Knaster-Reichbach
systems?

Because they give us homeomorphisms!

Theorem (see Medini, 2015)

Assume that 〈〈hn,Kn〉 : n ∈ ω〉 is a KR-system. Then there exists
a homeomorphism h : 2ω −→ 2ω such that h ⊇

⋃
n∈ω hn.

Corollary

Let X and Y be subspaces of 2ω. Assume that 〈〈hn,Kn〉 : n ∈ ω〉
is a KR-system satisfying the following additional conditions:

I X ⊆
⋃

n∈ω Cn

I Y ⊆
⋃

n∈ω Dn

I hn[X ∩ Cn] = Y ∩ Dn for each n

Then there exists a homeomorphism h : 2ω −→ 2ω such that
h ⊇

⋃
n∈ω hn and h[X ] = Y .
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Proof of Steel’s theorem
Remember that our strategy is to construct a KR-system
〈〈hn,Kn〉 : n ∈ ω〉. We have seen how to begin:

I C0 = X0 ∪ g [Y0]

I D0 = Y0 ∪ f [X0]

I h0 = (f � X0) ∪ (g−1 � g [Y0])

Then obtain a KR-cover 〈U0,V0, ψ0〉 for 〈2ω \ C0, 2
ω \ D0, h0〉.

The next step is like the first one, but with the following changes:

I Instead of working between 2ω and 2ω, work between U and
ψ0(U), where U ∈ U0

I Instead of looking at X0 and Y0, look at X1 ∩ U and
Y1 ∩ ψ0(U)

I Repeat for every U ∈ U0, then union up the partial
homeomorphisms to get h1

Keep going like this for ω more steps...



Thank you for your attention

and have a good evening!


